Part:BBa_K4509569:Design
HORSERADISH PEROXIDASE with constitutive promoter J23100
- 10COMPATIBLE WITH RFC[10]
- 12INCOMPATIBLE WITH RFC[12]Illegal NheI site found at 7
Illegal NheI site found at 30 - 21INCOMPATIBLE WITH RFC[21]Illegal BglII site found at 445
- 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal NgoMIV site found at 565
Illegal AgeI site found at 719
Illegal AgeI site found at 1022 - 1000COMPATIBLE WITH RFC[1000]
Source and Design
Source: BBa_K1291071
The promoter J23119 is replaced with J23100. This switch in the design will reduce the burden in the cell during over expression of enzymes.
Charcaterization
References
Azevedo, A. M., Martins, V. C., Prazeres, D. M., Vojinovic, V., Cabral, J. M., & Fonseca, L. P. (2003). Horseradish peroxidase: a valuable tool in biotechnology. Biotechnology annual review, 9(3), 1387-2656.
Florea, M., Hagemann, H., Santosa, G., Abbott, J., Micklem, C. N., Spencer-Milnes, X., ... & Chughtai, H. (2016). Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain. Proceedings of the National Academy of Sciences, 113(24), E3431-E3440.
Francisco lucha, FernandoMartínez-García, CarlosLópez-García.1985.A new stabilizing agent for the tetramethyl benzidine (TMB) reaction product in the histochemical detection of horseradish peroxidase (HRP).Journal of Neuroscience Methods.13(2),0165-0270.
Frey, A., Meckelein, B., Externest, D., & Schmidt, M. A. (2000). A stable and highly sensitive 3, 3′, 5, 5′-tetramethylbenzidine-based substrate reagent for enzyme-linked immunosorbent assays. Journal of immunological methods, 233(1-2), 47-56.
Verlander, C. P. (1992). Detection of horseradish peroxidase by colorimetry. Nonisotopic DNA probe techniques, 185-201.
https://parts.igem.org/Part:BBa_K1291071
Albers, S. C., Gallegos, V. A., & Peebles, C. A. M. (2015). Engineering of genetic control tools in Synechocystis sp. PCC 6803 using rational design techniques. Journal of Biotechnology, 216, 36–46.